508 research outputs found

    PET Imaging in ALS

    Get PDF
    Amyotrophic lateral sclerosis is a neurodegenerative disorder that primarily affects the motor system, but extramotor involvement is common. Progressive muscle weakness and wasting, including bulbar and respiratory muscles, limit survival to 2–5 years after disease onset in most patients. The diagnosis is made on clinical grounds and is based on the presence of signs of upper and lower motor neuron loss in different body regions in the absence of other pathologies that can explain the symptoms and signs of the patient. Making an accurate diagnosis can be difficult in early disease stages. ALS is a heterogeneous disorder with variability in age at onset, in phenotypic presentation, in the extent of frontotemporal involvement and in the disease progression rate. There is a high unmet medical need for objective markers that aid in early diagnosis and in predicting disease outcome. In this chapter, the current knowledge about the diagnostic and prognostic value of 18F 2-fluoro-2-deoxy-D-glucose-PET in ALS is discussed. The potential of other targets and PET tracers to visualize different aspects of ALS disease pathology is described

    Diagnostic and Prognostic Performance of Neurofilaments in ALS

    Get PDF
    There is a need for biomarkers for amyotrophic lateral sclerosis (ALS), to support the diagnosis of the disease, to predict disease progression and to track disease activity and treatment responses. Over the last decade multiple studies have investigated the potential of neurofilament levels, both in cerebrospinal fluid and blood, as biomarker for ALS. The most widely studied neurofilament subunits are neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH). Neurofilament levels are reflecting neuronal injury and therefore potentially of value in ALS and other neurological disorders. In this mini-review, we summarize and discuss the available evidence about neurofilaments as diagnostic and prognostic biomarker for human ALS

    Inside out: the role of nucleocytoplasmic transport in ALS and FTLD

    Get PDF
    Neurodegenerative diseases are characterized by the presence of protein inclusions with a different protein content depending on the type of disease. Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are no exceptions to this common theme. In most ALS and FTLD cases, the predominant pathological species are RNA-binding proteins. Interestingly, these proteins are both depleted from their normal nuclear localization and aggregated in the cytoplasm. This key pathological feature has suggested a potential dual mechanism with both nuclear loss of function and cytoplasmic gain of function being at play. Yet, why and how this pathological cascade is initiated in most patients, and especially sporadic cases, is currently unresolved. Recent breakthroughs in C9orf72 ALS/FTLD disease models point at a pivotal role for the nuclear transport system in toxicity. To address whether defects in nuclear transport are indeed implicated in the disease, we reviewed two decades of ALS/FTLD literature and combined this with bioinformatic analyses. We find that both RNA-binding proteins and nuclear transport factors are key players in ALS/FTLD pathology. Moreover, our analyses suggest that disturbances in nucleocytoplasmic transport play a crucial initiating role in the disease, by bridging both nuclear loss and cytoplasmic gain of functions. These findings highlight this process as a novel and promising therapeutic target for ALS and FTLD.status: publishe

    Early stages of building a rare disease registry, methods and 2010 data from the Belgian Neuromuscular Disease Registry (BNMDR)

    Get PDF
    The Belgian Neuromuscular Disease Registry, commissioned in 2008, aims to collect data to improve knowledge on neuromuscular diseases and enhance quality health services for neuromuscular disease patients. This paper presents a clear outline of the strategy to launch a global national registry. All patients diagnosed with one of the predefined 62 neuromuscular disease groups and living in Belgium may be included in the yearly updated Registry. Basic core data is harvested through a newly designed web application by the six accredited neuromuscular reference centres. In 2010, 3,424 patients with a neuromuscular disorder were registered. The most prevalent disease group in the Registry is Hereditary Motor and Sensory Neuropathy, as similarly stated by other studies, albeit the prevalence in Belgium is five times lower: 6.5 per 100,000 in the north of Belgium, versus 17.0-41.0 per 100,000 in other areas of Europe. Very few patients were captured in the south of the country. With the aim to collect valuable epidemiological data, the registry targets to gather high quality data, that the sample to be representative of the population and that it be complete. The past 5 years of building the registry have improved its quality, albeit the consistent gap in data from the south of the country prevails, influencing the estimated prevalence of these diseases. To this day, the true burden of neuromuscular diseases in Belgium is not known but actions have been undertaken to address these issues

    Progranulin is Neurotrophic In Vivo and Protects against a Mutant TDP-43 Induced Axonopathy

    Get PDF
    Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43) is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal lobe dementia (FTLD). These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation) induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration

    Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS

    Get PDF
    Defects in axonal transport are thought to contribute to the pathogenesis of neurodegenerative disease. Because α-tubulin acetylation facilitates axonal transport, inhibition of the α-tubulin deacetylating enzymes, histone deacetylase 6 (Hdac6) and silent information regulator 2 (Sirt2), is thought to be an interesting therapeutic strategy for these conditions. Amyotrophic lateral sclerosis (ALS) is a one such rapidly progressive and fatal neurodegenerative disorder, in which axonal transport defects have been found in vitro and in vivo. To establish whether the inhibition of Hdac6 or Sirt2 may be of interest for ALS treatment, we investigated whether deleting Hdac6 or Sirt2 from the superoxide dismutase 1, SOD1G93A mouse affects the motor neuron degeneration in this ALS model. Deletion of Hdac6 significantly extended the survival of SOD1G93A mice without affecting disease onset, and maintained motor axon integrity. This protective effect was associated with increased α-tubulin acetylation. Deletion of Sirt2 failed to affect the disease course, but also did not modify α-tubulin acetylation. These findings show that Hdac6, rather than Sirt2, is a therapeutic target for the treatment of ALS. Moreover, Sirt2 appears not to be a major α-tubulin deacetylase in the nervous syste

    Identification and characterization of nanobodies targeting the EphA4 receptor

    Get PDF
    The ephrin receptor A4 (EphA4) is one of the receptors in the ephrin system that plays a pivotal role in a variety of cell-cell interactions, mostly studied during development. In addition, EphA4 has been found to play a role in cancer biology as well as in the pathogenesis of several neurological disorders such as stroke, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and Alzheimer's disease. Pharmacological blocking of EphA4 has been suggested to be a therapeutic strategy for these disorders. Therefore, the aim of our study was to generate potent and selective Nanobodies against the ligand-binding domain of the human EphA4 receptor. Weidentified two Nanobodies, Nb 39 and Nb 53, that bind EphA4 with affinities in the nanomolar range. These Nanobodies were most selective for EphA4, with residual binding to EphA7 only. Using Alphascreen technology, we found that both Nanobodies displaced all known EphA4-binding ephrins from the receptor. Furthermore, Nb39 andNb53 inhibited ephrin-induced phosphorylationoftheEphA4proteininacell-basedassay. Finally, in a cortical neuron primary culture, both Nanobodies were able to inhibit endogenous EphA4-mediated growth-cone collapse induced by ephrin-B3. Our results demonstrate the potential of Nanobodies to target the ligand-binding domain of EphA4. These Nanobodiesmaydeservefurtherevaluationaspotentialtherapeutics in disorders in which EphA4-mediated signaling plays a role
    • …
    corecore